Electrochemical inactivation kinetics of boron-doped diamond electrode on waterborne pathogens.
نویسندگان
چکیده
A boron-doped diamond (BDD) electrode was constructed as a water disinfector for the inactivation of water borne pathogens. The bactericidal effect of the disinfector was evaluated on artificially contaminated waters containing, respectively, Escherichia coli, Pseudomonas aeruginosa and Legionella pneumophila at high density. By treating the bacterial suspensions with 4 V of constant voltage between the BDD and the counter-electrode for 50 min, the population of E. coli and P. aeruginosa decreased from (10E + 7-8 colony-forming unit mL(-1)) to below the detection limits of the colony-formation method. Meanwhile, L. pneumophila were reduced to virtually zero when analyzed by fluorescence-based staining. The influences of production parameters (voltage, NaCl concentration and flow rate) on the disinfection kinetics of the BDD disinfector were examined with respect to operational conditions. Voltage was the most significant factor for adjusting the extent of electrolysis, followed by NaCl concentration and flow rate, to influence the disinfection efficiency. The disinfection of natural river water samples containing numerous microbes was performed for a practicability investigation of the BDD electrode. Approximately 99.99% bactericidal efficiency was confirmed by viability detection for E. coli and common germs in treated water. The results showed that the BDD electrode is a promising tool for various wastewater disinfections to combat waterborne diseases.
منابع مشابه
Boron-doped diamond electrodes in organic media: Electrochemical activation and selectivity effects
This study highlights the effects of the electrochemical surface pre-treatment of polished polycrystalline boron-doped diamond electrodes in ethanol on electron transfer to organic redox systems. A novel ‘‘activation’’ procedure based on cathodic polarisation in ethanol (0.01 M NBu4PF6) is proposed and shown to be highly effective in promoting electron transfer to the aqueous FeðCNÞ =4 6 redox ...
متن کاملElectroanalysis of tetracycline using nickel-implanted boron-doped diamond thin film electrode applied to flow injection system.
The electrochemical analysis of tetracycline was investigated using nickel-implanted boron-doped diamond thin film electrode by cyclic voltammetry and amperometry with a flow injection system. Cyclic voltammetry was used to study the electrochemical oxidation of tetracycline. Comparison experiments were carried out using as-deposited boron-doped diamond thin film electrode (BDD). Nickel-implant...
متن کاملElectrochemical Behaviors of Chlorophenol Aqueous Solutions at Boron- Doped Diamond Electrode
The electrochemical behaviors of different chlorophenols at boron-doped diamond thin film electrode were investigated. Four chlorophenols, the 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6TCP) and pentachlorophenol (PCP), with various number of chlorine atoms in the benzene rings, were studied by using cyclic voltammetry at different scan rates over the poten...
متن کاملA practical guide to using boron doped diamond in electrochemical research.
Conducting, boron doped diamond (BDD), in addition to its superior material properties, offers several notable attributes to the electrochemist making it an intriguing material for electrochemical research. These include the widest solvent window of all electrode materials; low background and capacitive currents; reduced fouling compared to other electrodes and; the ability to withstand extreme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of water and health
دوره 9 3 شماره
صفحات -
تاریخ انتشار 2011